Machine Learning for Ontology Mining: Perspectives and Issues

Claudia d'Amato

Department of Computer Science University of Bari

OWLED 2014 \diamond Riva del Garda, October 18, 2014

500

Contents

Introduction & Motivation

2 Basics

- 3 Instance Retrieval as a Classification Problem
- Concept Drift and Novelty Detection as a Clustering Problem
- 5 Ontology Enrichment as a Pattern Discovery Problem

6 Conclusions

イロト イポト イヨト イヨト

Introduction & Motivations

- In the SW, ontologies play a key role
- They are equipped with deductive reasoning capabilities
 - they may fail
 - on large scale
 - when data are incoherent/noisy
- Idea: exploiting Machine Learning methods for *Ontology Mining* related tasks

Ontology Mining: Definition

Ontology Mining

all activities that allow

- to discover hidden knowledge from ontological knowledge bases
- by possibly using only a sample of data

Image: A test of te

Machine Learning: Basics

Machine Learning (ML) methods

• focus on the development of methods and algorithms that can teach themselves to grow and change when exposed to new data

Special Focus on:

- (similarity-based) inductive learning methods
 - use specific examples to reach general conclusions
 - are known to be very efficient and <u>fault-tolerant</u>

Induction vs. Deduction

Deduction (Truth preserving)

Given:

- a set of general axioms
- a proof procedure

Draw:

• correct and certain conclusions

Induction (Falsity preserving)

Given:

• a set of examples

Determine:

- a *possible/plausible* generalization covering
 - the given examples/observations
 - new and not previously observed examples

→ Ξ →

Inductive Learning Approaches and Tasks I

Supervised (Learning from examples)

- Given a training set {(x₁, y₁), ... (x_n, y_n)} where x_i are input examples and y_i the desired output, learn an unknown function f such that f(x) = y for new examples
 - y having discrete values \Rightarrow Classification Problem
 - y having continuos values \Rightarrow *Regression Problem*
 - y having a probability value \Rightarrow *Probability Estimation Problem*
- Supervised Concept Learning:
 - Given a training set of positive and negative examples for a concept,
 - *construct* a description that will accurately classify whether future examples are positive or negative.

OWLED 2014 7 / 70

イロト イポト イヨト イヨト 二日

Basics

Inductive Learning Approaches and Tasks II

Unsupervised (Learning from Observations)

- \bullet Given a set of observations $\{x_1,\ldots x_n\}$
 - discover hidden patterns in the data \Rightarrow Discovery
 - for a concept/class/category, construct a description that is able to determine if a (new) example is an instance of the concept (positive example) or not (called negative example). ⇒ Concept Learning
 - assess groups of similar data items \Rightarrow *Clustering*

Semi-supervised learning

- is halfway between supervised and unsupervised learning
- training data is built up by both few labeled (i.e. with the desired output) and unlabeled data
- both kinds of data are used for solving the learning tasks (almost the same tasks as for the case of supervised learning)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Focus I

Exploitation of Inductive Learning for performing:

- approximate inductive instance retrieval
 - $\bullet\,$ regarded as a classification problem \Rightarrow (semi-)automatic ontology population
- automatic concept drift and novelty detection
 - regarded as a clustering (and successive concept learning) problem
- semi-automatic ontology enrichment
 - regarded as pattern discovery problem problem
 - exploiting the evidence coming from the data \Rightarrow discovering hidden knowledge patterns in the form of relational association rules
 - existing ontologies can be straightforwardly extended with formal rules
 - new axioms may be suggested

イロト (過) (ヨ) (ヨ) (ヨ) () ()

Instance Retrieval as a Classification Problem

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Issues & Solutions I

Focus: Instance Retrieval \rightarrow finding the extension of a query concept

- Task *casted* as a classification problem
 - assess the class membership of the individuals in a KB w.r.t. the query concept

State of the art classification methods cannot be straightforwardly applied for the purpose, since

- they are generally applied to *feature vector* representation
 → upgrade DL expressive representations
- An implicit Closed World Assumption is made in ML
 → cope with the Open World Assumption made in DLs
- Classification: classes considered as *disjoint*
 - \rightarrow cannot assume disjointness of all concepts

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Issues & Solutions II

Adopted Solutions:

- Defined new semantic similarity measures for DL representations
 - to cope with the high expressive power of DLs
 - $\bullet\,$ to convey the underlying semantics of KB
 - to deal with the semantics of the compared objects (concepts, individuals, ontologies)
- Formalized a set of criteria that a similarity function has to satisfy in order to be defined *semantic* [d'Amato et al. @ EKAW 2008]
- Definition of the classification problem taking into account the OWA
- Multi-class classification problem decomposed into a set a smaller classification problems

イロト イポト イヨト イヨト

Definition (Problem Definition)

Given:

- a populated ontological knowledge base $KB = (\mathcal{T}, \mathcal{A})$
- a query concept Q
- a training set with $\{+1, -1, 0\}$ as target values

Learn a classification function f such that: $\forall a \in Ind(A)$:

- f(a) = +1 if a is instance of Q
- f(a) = -1 if a is instance of $\neg Q$
- f(a) = 0 otherwise (unknown classification because of OWA)

Dual Problem

- given an individual $a \in Ind(A)$, tell concepts C_1, \ldots, C_k in KB it belongs to
- the multi-class classification problem is *decomposed* into a set of *ternary classification problems* (one per target concept)

・ロト ・聞ト ・ ヨト

Developed methods

- relational K-NN for DL KBs [d'Amato et al. @ ESWC 2008]
- kernel functions for kernel methods to be applied to DLs KBs [Fanizzi et al. @ JWS 2012, Bloehdorn and Sure @ ISWC'06]
- REDUCE grounded on Reduced Coulomb Energy Networks [Fanizzi et al. @ IJSWIS 2009]
- TERMITIS grounded on the induction of Terminological Decision Trees [Fanizzi et al. @ ECML/PKDD'10]

- 4 個 ト 4 ヨ ト 4 ヨ ト - -

Example: Nearest Neighbor Classification

query concept HardWorker k = 7target values standing for the class values: $\{+1, 0, -1\}$

 $class(x_q) \leftarrow ?$

Example: Nearest Neighbor Classification

query concept HardWorker k = 7target values standing for the class values: $\{+1, 0, -1\}$

 $class(x_q) \leftarrow +1$

Instance Retrieval as a Classification Problem

Example: Kernel Method Classification

OWLED 2014 17 / 70

Image: A math a math

DQC

On evaluating the Classifiers

Problem: How to evaluate the classification results

- Performance compared with a standard reasoner (Pellet)
- Registered cases in which the reasoner did not return any result, differently from the classifier
- Behavior registered as mistake if precision and recall where used while it could turn out to be a correct inference when judged by a human

Defined new metrics for evaluating the performances of the classifiers

• To distinguish between inductively classified individuals and real mistakes additional indices have been considered.

Additional Evaluation Parameters

- *match rate*: cases of match of the classification returns by both procedures.
- *omission error rate*: cases when our procedure cannot decide (0) while the reasoner gave a classification (±1)
- *commission error rate*: cases when our procedure returned ±1 while the reasoner gave the opposite outcome ∓1
- *induction rate*: cases when the reasoner cannot decide (0) while our procedure gave a classification (±1)

Lesson Learnt from experiments I

Experiments performed on ontologies publicly available

- Commission error almost null on average
- Omission error rate almost null
- Induction Rate not null
 - new knowledge (not logically derivable) is induced ⇒ it can be used for making the *ontology population task semi-automatic*
 - induced knowledge can be found ⇒ individuals are instances of many concepts and they are homogeneously spread w.r.t. the several concepts.
- most of the time the most *effective* method \Rightarrow relational K-NN
- \bullet the most scalable method \Rightarrow kernel method embedding a DL kernel function

イロト 不得下 イヨト イヨト

Lesson Learnt from experiments II

• Since inductive conclusions are not certain, probabilities for the classification results may be computed

₩

- Probability values may be ultimately used for completing ontologies with probabilistic assertions
 - enabling more sophisticate approaches to dealing with uncertainty

Concept Drift and Novelty Detection as a Clustering and successive Concept Learning Problem

900

Concept Drift and Novelty Detection

- Ontologies evolve over the time.
 - New assertions
 - New concept definitions

• Concept Drift

- the change of a known concept w.r.t. the evidence provided by new annotated individuals that may be made available over time
 - \bullet almost all Workers work for more than 10 hours per days \Rightarrow HardWorker

Novelty Detection

- isolated cluster in the search space that requires to be defined through new emerging concepts to be added to the KB
 - subset of Workers *employed* in a company \Rightarrow Employ
 - subset of Workers working for one or more companies \Rightarrow Freelance

• FOCUS : (Conceptual) clustering methods for automatically discover them

イロト イポト イヨト イヨト

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low

Basics on Clustering Methods

Clustering methods: unsupervised inductive learning methods that organize a collection of unlabeled resources into meaningful clusters such that

- intra-cluster *similarity* is high
- inter-cluster *similarity* is low

Clustering Individuals of An Ontology: Developed Methods

- KLUSTER [Kietz & Morik, 94]
- CSKA [Fanizzi et al., 04]
 - Produce a *flat output*
 - Suffer from noise in the data
- Similarity-based ⇒ *noise tolerant*
 - Evolutionary Clustering Algorithm around Medoids [Fanizzi et al. @ IJSWIS 2008]
 - automatically assess the best number of clusters
 - k-Medoid (hierarchical and fuzzy) clustering algorithm *[Fanizzi et al. @ ESWC'08, Fundam. Inform. 2010]*
 - number of clusters required

OWLED 2014 27 / 70

Automated Concept Drift and Novelty Detection

If *new annotated individuals are made available* they have to be integrated in the clustering model

- Each individual is assigned to the closest cluster (measuring the distance w.r.t. the cluster medoids)
- The entire clustering model is recomputed
- The new instances are considered to be a *candidate* cluster
 - An *evaluation* of it is performed in order to assess its nature

Evaluating the Candidate Cluster: Main Idea 1/2

Evaluating the Candidate Cluster: Main Idea 2/2

Evaluating Concept Drift and Novelty Detection

- The Global Cluster Medoid is computed $\overline{m} := \text{medoid}(\{m_j \mid C_j \in \text{Model}\})$
- $d_{\max} := \max_{m_j \in \text{Model}} d(\overline{m}, m_j)$
- if $d(\overline{m}, m_{CC}) \leq d_{max}$ the CandCluster is a *Concept Drift*
 - CandCluster is **Merged** with the most similar cluster $C_j \in Model$
- if $d(\overline{m}, m_{CC}) \ge d_{max}$ the CandCluster is a *Novel Concept*
 - CandCluster is **added** to the model

- 4 伺 ト 4 ヨ ト - 4 ヨ ト - ヨ

Lesson Learnt from Experiments

Clustering algorithms

- applied on ontologies publicly available
- evaluated by the use of standard validity clustering indexes (e.g. Generalized Dunns index, cohesion index, Silhouette index)
- necessity of a domain expert/gold standard particularly for validating the concept novelty/drift

Conceptual Clustering Step

Performed as a supervised concept learning phase

Definition	(Problem	Definition)	
------------	----------	-------------	--

- Given
 - individuals in a cluster C as positive examples
 - the individuals in the other clusters as negative examples
 - $\bullet\,$ The KB ${\cal K}$ as a background knowledge
- Learn
 - a DL concept description D so that
 - the individuals in the target cluster *C* are instances of *D* while those in the other clusters are not

The new descriptions could be used for *enriching* the ontology

- 4 同 ト - 4 三 ト - 4 三

Developed Methods for Supervised Concept Learning

- For DLs that allow for (approximations of) the msc and lcs, (e.g. \mathcal{ALC} or \mathcal{ALE}):
 - given a cluster C_j ,
 - $\forall a_i \in C_j$ compute $M_i := msc(a_i)$ w.r.t. the ABox \mathcal{A}
 - let $MSCs_j := \{M_i | a_i \in \text{node}_j\}$
 - C_j intensional description lcs(MSCs_j)
- Separate-and-conquer approach
 - YinYang [lannone et al. @ Appl. Intell. J. 2007]
 - DL-FOIL [Fanizzi et al. @ ILP 2008]
 - DL-Lerner [Lehmann and Hitzler @ MLJ 2010]
- Divide-and-conquer approach
 - TermiTIS [Fanizzi et al. @ ECML 2010]

・ 同 ト ・ ヨ ト ・ ヨ ト

Separate and Conquer: Example

 $C_1 = MasterStudent$ $C'_1 = MasterStudent \sqcap \exists worskIn. \top$ $C_2 = BachelorStudent$ $C'_2 = BachelorStudent \sqcap \exists worskIn. \top$ Concept Drift and Novelty Detection as a Clustering Problem

Divide and Conquer: Example

3

590

イロト イポト イヨト イヨト

Examples of Learned Concept Descriptions with DL-FOIL

```
BIOPAX
induced:
Or( And( physicalEntity protein) dataSource)
original:
Or( And( And( dataSource externalReferenceUtilityClass)
ForAll(ORGANISM ForAll(CONTROLLED phys icalInteraction)))
protein)
NTN
induced:
Or( EvilSupernaturalBeing Not(God))
original:
Not(God)
FINANCIAL
induced:
Or( Not(Finished) NotPaidFinishedLoan Weekly)
original:
Or( LoanPayment Not(NoProblemsFinishedLoan))
    C. d'Amato (UniBa)
                       Machine Learning for Ontology Mining
                                                       OWLED 2014
```

37 / 70

Clustering Individuals of An Ontology: Additional Usage

Realized hierarchical clustering algorithms whose dendrogrom (tree-structure) is exploited [d'Amato et al. @ ESWC'08, IJSC 2010]

- as an index for speeding up the resource retrieval
 - Obtained logaritmic complexity rather than linear complexity
- to improve the readability of the query results (e.g. from SPARQL-queries) and for performing a kind of <u>faceted search</u>
 - Lesson Learnt: <u>Divisional</u> rather than <u>agglomerative</u> methods should be employed

Ontology enrichment as Pattern Discovery Problem

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = □

5900

Starting Observations

Focussing on Ontological Knowledge Bases

- Ontological knowledge bases are often not *complete*
 - i.e. missing concept and role assertions, disjointness axioms, relationships that instead occur in the reference domain
- Idea: exploiting the evidence coming from the data for discovering hidden knowledge patterns to be used for
 - extending existing ontologies with formal rules
 - suggesting knew knowledge axioms
- Research Direction: discovering hidden knowledge patterns in the form of relational association rules [d'Amato and Staab @ TR 2013]

イロト イポト イヨト イヨト 二日

Related Works

- Galárraga et al. @ WWW'13
 - discovering of association rules for predicting new role assertions from an RDF data source (no reasoning capabilities and no TBox information exploited)
- Lisi @ IJSWIS 7(3), 2011
 - discovering of frequent patterns in the form of DATALOG clauses from an $\mathcal{AL} Log$ KB at different granularity level w.r.t. the taxonomic ontology
- Völker & Niepert @ ESWC'11
 - association rules are learnt from RDF data (without any reasoning features) for inducing a schema ontology for them
- Józefowska, Lawrynowicz et al. @ TPLP 10(3), 2010
 - discovery of frequent patterns, in the form of conjunctive queries, from a combined DL KB plus rules
- Joshi, Hitzler et al. @ ESWC 2013
 - association rules are exploited for performing RDF data compression

Definition (Problem Definition)

Given:

- ullet a populated ontological knowledge base $\mathcal{K}{=}$ $(\mathcal{T},\mathcal{A})$
- a minimum "frequency threshold" (fr_thr)
- a minimum "head coverage threshold" (cov_thr)

Discover:

 all frequent hidden patterns, with respect to fr_thr, in the form of relational association rules that may induce new assertions for K.

Definition (Relational Association Rule)

Given

• a populated ontological knowledge base $\mathcal{K}=(\mathcal{T},\mathcal{A}),$

a **relational association rule** r for \mathcal{K} is a horn-like clause of kind $body \rightarrow head$

where:

- body represents an abstraction of a set of assertions in ${\cal K}$ co-occurring with respect to fr_thr
- head represents a possibly new assertion induced from ${\cal K}$ and body

SWRL [Horrocks et al.@ WWW'04] is adopted as representation language.

- allows to extends the OWL axioms of an ontology with Horn-like rules
- The result is a KB with an enriched expressive power.

イロト 不得下 イヨト イヨト 二日

Discovering *SWRL* rules of the form:

 $C_1(x) \land R_1(x, y) \land \dots \land C_n(z) \land R_l(z, a) \to R_k(y, z)$ $C_1(x) \land R_1(x, y) \land \dots \land C_n(z) \land R_l(z, a) \to C_h(y)$

 C_i and R_i are concept and role names of the ontological KB

Examples:

- $Woman(x) \land hasWellPayedJob(x, y) \Rightarrow Single(x)$
- Employ(x) ∧ worksAt(x, z) ∧ workForPrject(x, y) ∧ projectSupervisor(y, x) ⇒ CompanyManager(z, x)

Language Bias (ensuring decidability)

- safety condition : all variables in the head must appear in the body
- connection : atoms share at least a variable or a constant
- interpretation under *DL Safety* condition: all variables in the rule bind only to known individuals in the ontology
- Non Redundancy: there are no atoms that can be derived by other atoms

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

The General Approach

- Inspired to the general framework for discovering frequent DATALOG patterns [*Dehaspe et al.*'99; *Goethals et al.*'02] where patterns are conjunctive DATALOG queries
- Grounded on a level-wise *generate-and-test* approach
 - <u>Start:</u> initial general pattern i.e. a concept name (jointly with a variable name) or a role name (jointly with variable names)
 - Proceed: at each level with
 - specializing the pattern by the use of suitable operators
 - evaluate the generated specializations for possible pruning
 - Stop: stopping criterion met
- A rule is a list of atoms (interpreted as a conjunction) where the first one represent the head [Galarraga et al.@WWW'13]

イロト イポト イヨト イヨト

Pattern Specializations: Examples

Pattern to be Specialized $C(x) \wedge R(x, y)$

Non Redundant Concept D

Refined Patterns

C(x) ∧ R(x, y) ∧ D(x)
C(x) ∧ R(x, y) ∧ D(y)

Non Redundant Role *S* Fresh Variable *z*

Refined Patterns

•
$$C(x) \wedge R(x,y) \wedge S(x,z)$$

- $c(x) \wedge R(x,y) \wedge S(z,x)$
- $C(x) \wedge R(x,y) \wedge S(y,z)$
- $C(x) \wedge R(x,y) \wedge S(z,y)$

Non Redundant Role S All Variables Binded Refined Patterns $C(x) \land R(x, y) \land S(x, x)$ $C(x) \land R(x, y) \land S(x, y)$ $C(x) \land R(x, y) \land S(y, x)$ $C(x) \land R(x, y) \land S(y, x)$ $C(x) \land R(x, y) \land S(y, y)$

イロト イポト イヨト イヨト

3

Exploitation of the Association Rules and Utility

Examples:

- (Semi-)automatic ABox completion
 - rules may fire new assertions
 - alternatively extracted rules may be used by a rule-based classifier

Ontology Enrichment

- A rule may suggest an inclusion axiom that is missing in the ontology e.g. $Car(x) \Rightarrow Vehicle(x)$
- A rule may suggest a disjointness axiom axiom that is missing in the ontology $Man(x) \Rightarrow \neg Woman(x)$
- Creating Ontology with Enriched expressive power
 - discovered rules can be straightforwardly integrated with the existing ontology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Issues/Lessons Learnt

- Experimental evaluation for accessing the effectiveness of the method: how to set up it?
 - by considering smaller versions of ontologies, evaluate the correctness of predicted assertions when compared with the full ontology versions
- Develop a scalable algorithm for the purpose
 - investigate on *additional heuristics for reducing* the exploration of *the search space* and/or possible optimizations
 - (New) metrics for the evaluation of the *interestingness of the discovered rules* (potential inner and post pruning)
 - Set up/exploit *suitable data structures* i.e. Hash Table, RDB with indexes for *minimizing the usage of the reasoner* ⇒ bottleneck
 - Alternative method for generating the rules by considering subsets of frequent patterns

イロト イポト イヨト イヨト

Starting Obervations

Focussing on Heterogenous Sources of Information

- Available domain ontologies are increasing over the time
- Large amount of data stored and managed with RDBMS
- Ontologies and RDB may be used for complementing the knowledge for a given domain

Idea: exploiting the evidence coming from the data for **discoverying** hidden KB patterns across heterogeneous sources to be used for

- possibly completing/complementing both sources of knowledge
- empowering the reasoning process

イロト イポト イヨト イヨト

Simple Motivating Example...

• Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a kingship ontology $\mathcal{T} = \left\{ \begin{array}{ll} \operatorname{Person} \equiv \operatorname{Man} \sqcup \operatorname{Woman} \operatorname{Man} \sqsubseteq \neg \operatorname{Woman} & \top \sqsubseteq \forall \operatorname{hasChild.Person} \\ \exists \operatorname{hasChild}.\top \sqsubseteq \operatorname{Person} & \operatorname{Parent} \equiv \exists \operatorname{hasChild.Person} & \operatorname{Mother} \equiv \operatorname{Woman} \sqcap \operatorname{Parent} \\ \operatorname{Father} \equiv \operatorname{Man} \sqcap \operatorname{Parent} & \operatorname{Grandparent} \equiv \exists \operatorname{HasChild.Parent} & \operatorname{Child} \equiv \exists \operatorname{HasChild}^{-}.\top \end{array} \right\}$ vier) bacchild(alice claude) bacchild(alice daniel)

	(vvoman(alice)	Man(xavier)	hasChild(alice, claude)	hasChild(alice, daniel)	
1 _ J	J	Man(bob)	Woman(yoana)	hasChild(bob, claude)	hasChild(bob, daniel)	
$\mathcal{A} = \cdot$	ſ	Woman(claude)	Woman(zurina)	hasChild(xavier, zurina)	hasChild(yoana, zurina)	^
	U	Man(daniel)	Woman(maria)	hasChild(daniel, maria)	hasChild(zurina, maria)	

Let D be a job information database

ID	NAME	Surname	QUALIFICATION	SALARY	Age	City	Address
p001	Alice	Lopez	Housewife	0	60	Bari	Apulia Avenue 10
p002	Robert	Lorusso	Bank-employee	30.000	55	Bari	Apulia Avenue 10
p003	Xavier	Garcia	Policeman	35.000	58	Barcelona	Carrer de Manso 20
p004	Claude	Lorusso	Researcher	30.000	35	Bari	Apulia Avenue 13
p005	Daniel	Lorusso	Post Doc	25.000	28	Madrid	calle de Andalucia 12
p006	Yoana	Lopez	Teacher	34.000	49	Barcelona	Carrer de Manso 20
p007	Zurina	Garcia-Lopez	Ph.D student	20.000	25	Madrid	calle de Andalucia
p008	Maria	Lorusso	Pupil	0	8	Madrid	calle de Andalucia

OWLED 2014 50 / 70

・ロト ・四ト ・ヨト ・ヨト ・ヨ

...Simple Motivating Example

By jointly analyzing the available knowledge sources new additional information could be induced e.g.

- Women earning the highest amount of money are not mothers where:
 - information on being Woman and Mother comes from the ontology
 - \bullet information concerning the salary comes from the DB ${\bf D}.$

Intended Directions: [d'Amato et al.@URSW III Ch.]

- Learning Semantically Enriched Association Rules from both sources of knowledge in an integrated way
- set up an effective *data-driven Tableaux algorithm* exploiting the evidence coming from the data for assessing the "most plausible model" for a given concept description

OWLED 2014 51 / 70

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Building an Integrated Data Source: Main Idea

Construction of a unique table from D and ${\cal K}$

- State of the art implemented algorithms for learning Association Rules can be directly applied.
- No export of existing RDB has to be performed

Precondition/Assumption:

- \bullet dataset D and an ontological knowledge base ${\cal K}$ share (a subset of) common individuals
- a relation g that connects (some of) the individuals in \mathcal{K} with (some of) the objects of **D** is available

イロト イポト イヨト イヨト 二日

Building an Integrated Data Source: Example

OBJECT primary entity

JOB, AGE selected attributes from D.

 ${f 6}$ Person, Parent, Male, Female selected concept names from ${\cal K}$

Numeric attributes discretised

Object	Job	Age	Person	Parent	Male	Female
×1	Engineer	[36,45]	true	true	true	false
×2	Policeman	[26,35]	true	false	true	unknown
×3	Student	[16,25]	true	false	true	false
x ₄	Student	[16,25]	true	false	false	true
×5	Housewife	[26,35]	true	true	false	true
×6	Clerk	[26,35]	true	false	unknown	unknown
×7	Primary school teacher	[46,55]	true	unknown	unknown	unknown
×8	Policeman	[16,25]	true	true	unknown	unknown
X9	Student	[16,25]	true	unknown	unknown	unknown

イロト イポト イヨト イヨト

Learning Semantically Enriched ARs

Given the integrated data source

- an APRIORI-like algorithm can be used to discover the set of frequent items
- the association rules are extracted

Example of extracted rules

#	RULE	Confidence
r1	$(AGE=[16, 25]) \land (JOB = Student) \Rightarrow (Parent = false)$	0.98
r2	$(\text{Job}=Policeman) \Rightarrow (Male = true)$	0.75
r3	$(AGE=[16,25]) \land (Parent = true) \Rightarrow (Female = true)$	0.75
r4	$(\text{Job}=Primary school teacher}) \Rightarrow (Female = true)$	0.78
r5	$(\text{JOB}=Housewife) \land (\text{AGE} = [26, 35]) \Rightarrow$	0.85
	$(\textit{Parent} = \textit{true}) \land (\textit{Female} = \textit{true})$	

Exploitation of the Association Rules

Performing Data Analysis

• rule suggests the average age of being a parent in Madrid that could be different in other geographical areas, e.g. $(AGE=[25, 34]) \land (CITY = Madrid) \Rightarrow (HasChild = true)$

Data completion (both in ${\cal K}$ and D)

 rule may allow some individuals to be asserted as instance of the concept Worker in *K*(when not known) e.g. SALARY=[15000, 24999] ⇒ (Worker = *true*)

Ontology Enrichment

• rule may suggest a disjointness axiom (if absent in *K*but extensionally provided) e.g.

$$(\mathsf{Woman} = true) \Rightarrow (\mathsf{Man} = false)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Open Issues

- Evaluate the ability of the data-driven ontology population procedure to induce new knowledge w.r..t existing inductive classifiers
 - final goal: showing that hybrid sources of information actually help to induce a larger (and/or more accurate) amount of new knowledge.
- Concepts (and roles) inclusions are not taken into account ⇒ saving of computational costs by explicitly treating this information
- Explicitly consider individuals that are role fillers
- Application of the discovery algorithm directly to a multi-relational representation

Exploiting Rules for Reasoning

- Semantically enriched ARs can be exploited when performing deductive reasoning on ontological KBs
- Goals:
 - reduce the computational effort for finding a model for a given (satisfiable) concept
 - suppling the most the plausible model (that best fits the available data)

Idea:

- set up an heuristic exploiting the evidence coming from the data
 - codified by the semantically enriched ARs
- to be used when random choices occur
 - e.g. when processing a concepts disjunction
 - ideal solution for saving computation (case of satisfiable concept) ⇒ directly choose the ABox containing a model

イロト 不得下 イヨト イヨト

Motivating Example

Example

Given an individual *x*, which is known to be a *Person*, a *high school student*, and has the property of being 15 years old.

Decide on whether x is instance of the concept *Parent* or not, while no information allows to infer neither x is a *Parent* nor x is \neg *Parent*.

Given the *semantically enriched association rule* (with high degree of confidence)

$$(AGE = [0, 16]) \Rightarrow (\neg Parent) \quad 0.99$$

it can be exploited to conclude (with high confidence) that x is not a *Parent*.

イロト イポト イヨト イヨト

Definition (Inference Problem)

Given: the following

- **D**, \mathcal{K} , the set R of semantically enriched ARs,
- a (possibly complex) concept E of \mathcal{K} ,
- the individuals $x_1, \ldots, x_k \in \mathcal{K}$ that are instances of E,
- the grounding g of Σ on D

Determine: the model \mathcal{I}_r for E representing the **most plausible model** given the \mathcal{K} , **D**, g and R.

Intuition:

- the most plausible model \mathcal{I}_r for E is the one on top of the ranking of the possible models \mathcal{I}_i for E
- Such a ranking is built according to the degree up to which the models are compliant with the set *R* of ARs and *K*.

イロト 不得下 イヨト イヨト

Data Driven Tableaux Algorithm: Differences with the Standard Tableaux algorithm

- the starting model for the inference process is given by the set of all attributes (and corresponding values) of the unified tabular representation that are related to the individuals x₁,..., x_k that are instances of E,
- ② a heuristic is adopted for performing the ⊔-rule
- the most plausible model for the concept E and the individuals x_1, \ldots, x_k is built w.r.t. \mathcal{K} , **D** and R
- The obtained model is a *mixed model*, namely a model containing both information from R and \mathcal{K}

イロト イ団ト イヨト イヨト 二耳

Data Driven Tableaux Algorithm I

- For each individual x_i ∈ {x₁,..., x_k} that is instance of E, all attribute names A_i in the unified tabular representation T that related to x_i are selected jointly with the corresponding values a_i
- The assertions $A_i(a_i)$ are added to \mathcal{I}_r
 - For simplicity and without loss of generality, a single individual x will be considered
- Once the initial model *I_r* is built, all deterministic expansion rules, namely all but ⊔-rule, are applied to *I_r* following the standard Tableaux algorithm.
- For the case of the ⊔-rule, a heuristic is adopted.

イロト 不得下 イヨト イヨト 二日

Data Driven Tableaux Algorithm II

Let $C \sqcup D$ be the disjunctive concept to be processed by \sqcup -rule. The choice on C rather than D (or vice versa) is driven by:

- Select the ARs in R containing C (resp. D) or its negation in the knowledge items of the right hand side
- 2 Consider the left hand side of each selected rule
- Some compute the degree of match between the left hand sides and the model under construction \mathcal{I}_r ,
 - Count the number of (both data and semantic) items in the left hand side that are in \mathcal{I}_r
 - averaging this number w.r.t. the length of the left hand side of the rule
 - Items with uncertain (unknown) values are not considered
 - The degree of match for the rules whose (part of the) left hand side is contradictory w.r.t. the model I_r is set to 0
- Discard rules with 0 degree of match

(日) (四) (王) (王) (王)

Data Driven Tableaux Algorithm III

- Compute the weighted confidence value weightedConf = ruleConfidence * degreeOfMatch for each of the remaining rules
- **O** Discard rules with weightedConf below a given threshold
- Select the rule with the highest weightedConf (In case of multiple rules, a random choice is performed.
- If the chosen rule contains C = true (resp. D = true) in the right hand side ⇒ extend the model under construction I_r with C(x) (resp. D(x)) (x is the individual under consideration)
- If the chosen rule contains C = false (resp. D = false) in the right hand side ⇒ extend the model under construction I_r with D(x) (resp. C(x)).

イロト (過) (ヨ) (ヨ) (ヨ) () ()

Data Driven Tableaux Algorithm IV

- If no rules are available for one of the two concepts, e.g. concept D, the concept for which some evidence, via existing rules, is available, i.e. C, will be chosen for expanding *I_r*.
- **1** If no rule in *R* contains *C* (resp. *D*) or its negation in the right hand side \Rightarrow *Compute* the prior probability of *C* (resp. *D*) and perform the choice on its ground
 - computed by adopting a frequency-based approach e.g. P(C) = |ext(C)|/|A|
 - The concept to be chosen for extending \mathcal{I}_r is the one having the highest prior probability.

イロト イポト イヨト イヨト 二日

Data Driven Tableaux Algorithm: Example

Assume the enriched ARs discovered in a demographic domain

#	RULE	Confidence
r1	$(AGE=[16, 25]) \land (JOB = Student) \Rightarrow (Parent = false)$	0.98
r2	$(\text{Job}=Policeman) \Rightarrow (Male = true)$	0.75
r3	$(AGE=[16, 25]) \land (Parent = true) \Rightarrow (Female = true)$	0.75
r4	$(\text{Job}=Primary school teacher}) \Rightarrow (Female = true)$	0.78
r5	$(\text{JOB}=Housewife) \land (\text{AGE} = [26, 35]) \Rightarrow$	0.85
	$(\mathit{Parent} = \mathit{true}) \land (\mathit{Female} = \mathit{true})$	

and the model \mathcal{I}_r under construction for the inference procedure

Object	Јов	Age	Parent	Male	Female
<i>x</i> 7	Primary school teacher	[46,55]	unknown	unknown	unknown
<i>x</i> 8	Policeman	[16,25]	true	unknown	unknown
<i>X</i> 9	Student	[16,25]	unknown	unknown	unknown

The reasoning process has to evaluate the expansion of $(Male \sqcup Female)(x)$ w.r.t. \mathcal{I}_r Application of the heuristic

Applying the Heuristic: Example I

- Selection of the rules having Male (resp. Female) in the right hand side \Rightarrow r_2 , r_3 , r_4 and r_5 .
- Computation of the degree of match
 - r₂: matchFound = 1 (because of JOB = Policemen (for x₈)) ⇒ degreeOfMatch = 1 (note that lengthLeft = 1)
 - r₃: matchFound = 2 (because of AGE = [16, 25] and Parent = True (for x₈)) ⇒ degreeOfMatch = 2 (note that lengthLeft = 2)
 - r_4 : matchFound = 1 (because of JOB = PrimarySchoolTeacher (for x_7)) \Rightarrow degreeOfMatch = 1 (note lengthLeft = 1)
 - r₅: matchFound = 0 (because no item matches the left hand side of r₅) ⇒ degreeOfMatch = 0 (note lengthLeft = 2 since the left hand side of r₅ is made by two items)
- r₅ is *discarded* because of null degree of match

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Applying the Heuristic: Example II

- For each of the remaining rules, *compute* the <u>weighted confidence</u> value
 - r_2 : weightedConf = ruleConfidence * degreeOfMatch = 0,75 * 1
 - *r*₃: weightedConf = 0.75 * 1 = 0.75
 - *r*₄: *weightedConf* = 0.78 * 1 = 0.78
- *Filter out* rules with *weightedConf* < *thr* (here 0.5) ⇒ none of the above rules is discarded
- *Select* the rule with the highest *weightedConf* \Rightarrow *r*₄ is selected
- the right hand side of r₄ contains *Female* ⇒ the model under construction *I_r* is <u>enriched with</u> *Female(x)* (where x is the individual under consideration)
- this enriched model is considered for the application of the successive expansion rules, until the stopping criterion is met.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Open Issues

• Compare the Data-Driven and the Standard Tableaux Algorithms

- number of performed ABox expansions
 - expected results: the heuristic decreases the ABox expansions when performing the consistency check of a consistent disjoint concept
- execution time
 - since the data-driven Tableaux algorithm requires some additional computations (e.g. computing the degree of match)
- Formal proof that the model computed by the data-driven Tablaeux algorithm is the most plausible model w.r.t. a notion of plausibility
 - intuitively, since it is the most compliant one with the statistical regularities coming from the data it is also the most reliable model

イロト イポト イヨト イヨト

Conclusions

Machine Learning methods

- could be usefully exploited for ontology mining
- suitable on large scale and in case of incoherent/noisy KBs
- can be also seen as an additional layer on top of deductive reasoning for realizing new/additional forms of approximated reasoning capabilities.

Future directions:

- Semi-Supervised Learning methods particularly appealing for LOD
- special focus on scalability issues

イロト 不得下 イヨト イヨト

The End

That's all!

Questions ?

Nicola Fanizzi

Steffen Staab

Floriana Esposito Luciano Serafini

500